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We consider a one-dimensional continuous medium composed of a number of 

periodically recurring homogeneous regions. In each of these regions the mo- 
tion is defined by the dynamic equations of elasticity, the initial conditions 
and the conditions of continuity at the boundaries of the regions. We prove that 

the displacements of the region boundaries are determined by certain continu- 
ous functions. The finite difference equations defining these functions in the 

long wave approximation describe the frequency spectrum of the inhomogene- 

ous medium with an accuracy, directly related to the number of the field func- 
tions introduced for the displacements of boundaries of the same type. In this 

manner we present a version of the couple stress theory of elasticity, in which 
the mean value of the displacement of the region boundaries can be treated 

as a displacement of a certain homogeneous macroscopic body, while the rela- 
tive displacements of the boundaries (which may be called moments or couple 
stresses) define the interaction between the regions and, in particular, the stress 
concentration due to the inhomogeneity of the structure. 

1. Let us consider the displacement u (X,-Z) of an elastic rod of langth L, consisting 
of N different homogeneous segments. The initial and boundary conditions have the 
form 

u (x, 0) = u’ (s, 0) = 0 

u (0, t) = u, (t>, u (k 9 = UN+1 (t> 

We assume for convenience that 

U,(t) = U,+,(t) = 0 for t<o 

The displacement uj (Ej, t) of each j th segment is determined from the wave equa- 
tion, the initial conditions and the conditions of continuity at the regions boundaries 

a2uj _ a2Uj 

---9 at2 arlj2 
j=i,2...lV 

Uj (vj, 0) = Uj’ (qjt 0) = 0 

“j (0, t) = uj (t), Uj (hj, t) = Uj+l (t) 
Uj(t) = 0 for t< 0 (1.1) 
auj 

‘jxxj arlj nj=o=%-l ( 1 aUj_l ( ) 87 
3-l ‘Ij_l’hj_l 
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Here Cj is the speed of sound for the 1 th segment, li is the length of the j th segment, 

& is the position (internal) coordinate on the x-axis measured from the left boundary 

of the 1 th segment, Sj and sj+i denote the respective stresses at the left and right boun- 

dary of the j th segment, Ej is the Young’s modulus and Fj is the cross section of the 

pth boundary. 
Solving the boundary value problems with the conditions of continuity given by (1.1) 

by means of the Laplace-Carson ~ansformation [l] 

u* (p) = p S e-% (t) cZt 

we obtain the following recurrence relations for the Laplace transforms of the boundary 
displacements Uj* (p): 

& UT+1 (p) - (Xj cth hjp + Xi-1 cth J+d’) Uj* (P) + 
j 

ep UEI (P) = 0 

j=2,3...N--1 (1.2) 

It can be confirmed by direct substitution that (1.2) represent Laplace transforms of the 

following equations : 

- “’ +2”-1 Uj (t) + Xj 2 Uj+l (i! - nhj) + Xj-1 2 Uj_1 (t - nkj-1) = 
%=1,3,5... ?I=l,S,&.. 

Xi 2 Uj (t - ?i?Aj) + Xj-1 2 Uj (t - mAj_l) (1.3) 
m=2,4,6... m=2,4,6... 

j=2,3...N--1 

We eliminate the sums in (1.3) in the following manner. We write the equations for 
the time t* = t -I_ 2hj and subtract the corresponding equations given by (1.3) for 
the time t . We use the resulting equations and repeat the procedure to obtain the dif- 

ference between the times t and t* * z= t + .Zhj_l. As a result we find 

where 

Thus the dynamic behavior of an inhomogeneous rod is described using a system of time 
difference equations, from which the displacements of all internal boundaries can be 
obtained when the displacements of the rod ends are given. 

2, In an earlier paper r2] it was shown that for the one-dimensional continuous me- 
dium constructed on the basis of a linear inhomogeneous chain, if the number of the 
field functions introduced for the displacements of particles of the same type is increa- 
sed (or,in other words, when the number of identical particles or cells included in the 

macrocell is increased), then the long wave approximation to the spectrum of the con- 
tinuous medium agrees, with sufficient accuracy, with the spectrum of the initial inho- 
mogeneous chain. Above we have shown that an analogous result can be obtained for 
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the field functions corresponding to the displacements of the region boundaries of the 
same type, in an inhomogeneous rod possessing a periodic structure. With this in mind, 

let us first consider a two-component rod consisting of two types of homogeneous seg- 
ments recurring periodically. In this case the system (1.4) has the form 

where 

The spectral equation for such a rod is obtained by substituting into the system (2.1) 

UG = lJ1 exp itkj (Z1 + la) - ot} 

u zjtl = Uz exp i {k [i (ZI + Za) - Zal - wt} 
i=1,2,3... 

(2.2) 

cos k (I, + la) = cos (A, + ha) o - ‘y sin hl co sin h,o (2.3) 

In the simplest case when the wave numbers k and frequencies o are small, this reduces 

to 
k* (II + I# = co2 [hl’ + hsa + v h&-j 

The latter expression shows that for small k and o the speed of sound c in a two-com- 

ponent rod has the form 
c = (Z, + 1,)s [&” + A22 + ~hlAJ1 

Expression (2.3) implies that real wave numbers k do not exist for all values of CO. The 
admissible frequencies must satisfy the following inequality 

1-y = ( ) Ifr cos (h, - h,) 0 - &scos(5,+hz)w s 

( ) &+ 2cos(h,-Aha)o +- 4T 
(1 + v (2.4) 

The frequency ranges for the interval 3 - 2v/2 & y < 3 -j- 20 satisfying the 
condition (2.4) are shown in Fig. 1 as segments of the solid thick lines. Here we have 

Fig. 1 
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b=& k - k 
(1 + 7)” ’ a=k+ 

with CO9 X corresponding to curve 1 , a cos a X + b to curve 2 and a cos a X - 
b to curve 3. For the remaining values of y the difference from the given diagram 
consists in the fact that b > a. 

Thus the two-component rod with periodic structure considered here represents a dis- 
tinctive wave filter which passes the waves with frequencies belonging to the infinite 
set of admissible frequency ranges (2.4). An equation analogous to (2.3) defines in 
quantum mechanics the energy levels in a particle in a periodic potential field, and this 

simulates the behavior of an electron in a one-dimensional crystal [3, 41. 
Let us now introduce the continuous differentiable field functions ur (x, t) and 

UZ (z, t) connected with the functions uj (t) by means of the following relations: 

u, (z, t) = Uj(t), j = 3,5, 7. for z = ‘G - -&) (II + Is) 
t 

(2.5) 

U1 (5, t) = Uj (t), j = 2,4, 6 . . for 2 =(+-l)(Z,+Z,)+Z, 

and satisfying, for any values of x, the equations 

y Ap,(s)+ 9 Avuz (4 = TAG, (x + 11) + A,.,z~,(cc - I,) 

(2.6) 

l+ApuI(x)+ '+ A,q(z) = ~AA,u~(z - II) $ A,,,u, (s + I,) 

The latter equations reduce to (2.1) when x are taken from (2.5). We obtain the long 

wave approximation to (2.1) from (2.6) by expanding, in the latter, ur (X _t I,, t), 
u1 (x - Z9, t), uz (x $ I,, t) and ug (x - I,, t) in powers of Z up to and including 
the I” -terms 

Here the prime denotes a derivative in L. The spectral equation corresponding to (2.7) 
has the form 

1 - + k2(ZI j-- Z,)2 = cos(h, + IL,) (1 - r)? 0 - - sin ?L,W sin h,o 
2T (2.8) 

and represents an expansion of the exact spectral equation (2.3) in k about the point 
k = 0 . The admissible frequencies of (2.8) are obtained from the condition that 

k2 > 0, and must satisfy the following inequality: 

cos @l + A,) 0 < 4 + (&g2cos (h, + 3”2) 0 
(1 + T)- 

Clearly, the admissible frequencies which correspond to other values of k, e. g. 
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k=_2L k= 3n 
11 + la ’ 2 (r:-t 12) ’ k = 2 (21 + 12) 

do not appear in the present case involving two field functions. 
The proposed method which uses field functions in the long wave approximation to 

provide a more accurate description of the dynamics of an inhomogeneous medium, is 
based on the fact that additional, different field functions are introduced for the bound- 
aries of the same type of segments and particles. In other words, a macrocell is construc- 
ted, the period of which is an integral multiple of the minimal period of the structure 

and exceeds it in value. Each particle boundary in the macrocell is given its own field 
function. 

In accordance with the above statements, let us consider a two-component rod with a 

macrocell containing four consecutive segments, i. e. we introduce four field functions 

ur (5, t), uz (z, t), us (LC, t) and u4 (x, t) such, that 

~1 (z, t) = Uj (t), i = 2,6,10. . . for z=(+--1)(ZI+Z3)+Z, 

U2(Z,t)=Uj(t), i=3,7,11... for z = (+-- +)(Z, + 1.J (2.9) 

U3 (X, t) = Uj (t), i = 4,8,12. . . for s=($-i)(Z1+Z.J+Z, 

U4(2,t)=Uj(t), i-5,9,13... for s=(+-+)(Z,-+-1,) 

In the long wave approximation these functions satisfy the following equations: 

Ah,u3 + Z3Am -I- TA&' 

qAt*u3 -+~A,u, = 7Ah,u3 + ~Z~AA,U~' -I- ‘+= Axp3" -I- 

AA,ul - Z~AA,U~'-/- $ AA~u~~ (2.10) 

yApus +- ';'Avu3 = ~AA,u~ - rZlA~.u; +~2A&" -I- 

Ax,uq -I- ZJ~,uql -I- G A+4 

y A,u, +- ' 2' Avu4 = ~AQL~ f yZ,Ax,q' -I- $ Awln + 

laa 
&,~3 - hr~3’ -I- 2 hub 

In this case the spectral equation decomposes into two equations 

+ [I - $ ka (Z1 + Z,)2] = cos (A, $- 3L2) o - 9 sin 3L10 sin Aao (2.11) 

One of these equations is identical to (2.8) and the other coincides with the expansion, 

in terms of k , of the exact spectral equation (2.3) about the point k = n / (Z1 + la). 
The admissible frequencies defined by (2.11) are obtained from the condition that 
k” > 0 , and satisfy the following relations: 
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i--Y2 ( ) 1$-y co.3 (h, - h,) 0 - &aw~ +h2)@ < 
I-7 2 ( ) 4r 
I_tr cos (hr - A,) w 4 - (1 + W 

Further sharpening of the spectrum of the two-component rod is achieved by introducing 
eight field functions U, (T, t), m = 1,2 ,. ..,a. Their equations in the long wave appro- 
ximation are 

F A,u~ + y A,ltj = ~Ah~~j-1 - ~Z,AX~U;_~ f $f Ah,~i_1 + 

I 
Ah,Uj+l+ ~~A~~u~~~ + 2 122 Ah&+1, i=3,5,7 

y Awuj + y A.J.+ = rAh,U.j+l Jr ~l,A+;+, + ‘?$ Ah,~y+l C 

AA,z+~ - E,A&_, -j- $ AX&~, j=Z,4,6,8 (2.12) 

The function Uj_s (x, t) in the above system must be replaced by us (2, t) for j ==I 

and t++t, (2, t) by u1 (CC, t) for j = 8, at the corresponding points. The spectral equa- 
tion of (8.12) decomposes into the following four equations: 

- -?i_ k2 (tl + l,)a] = cos (Al + h,) o - v sin h, o sin$w (2.13) 

& k VI + 62) = 
(1 - rj2 cm (b + b) 0 - -yTy--- sin h,o sin A.+ 

The first two of these equations are identical with (2.8) and (2.11). while the remaining 
two represent expansions in terms of k of the exact spectral equation (2.3) about the 
points 

respectively. 
Thus, on increasing the number of the field functions introduced for the displacements 

of boundaries of the same type in a two-component system we find, that in the long wave 
approximation its spectral characteristics are sharpened and on doubling the number of 
the field functions the spectral equation is obtained about the points 

k=O, k=& k= 3n 
3% 

2 2 (II i_ Ed ’ k = 2 (Zl + &I 

as well as other points obtained by halving the preceding intervals. 

The above example of doubling the number of particles included in the macrocell 
shows at once that the preceding frequency ranges are always included in the following 
ones, i.e. in the limit the correct spectrum is obtained accurately. It should be stated 
however, that any alternative method of inctreasing the number of segments in the mac- 
rocell will, in the limit, yield the same result. 

The fact established above forms the basis of the proposed method of constructing the 
couple stress theory of elasticity, the latter employing a finite number of field functions 
to increase the accuracy of the macroscopic representation in the homogeneous-in-the- 

mean and isotropic elastic systems and in the polycrystalline solids. 
The field equations for the two-particle (2.7), four-particle (2.10) and eight-particle 

(2.12) macrocells, applicable to a two-component inhomogeneous rod, are of the follow- 
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ing type. The dependence on the coordinates with respect to displacements of the inter- 
nal boundaries is given by a system of second order linear differential equations, while 
the corresponding time dependence is expressed in terms of a system of finite-difference 

equations. Further simplification of these systems by expanding them with respect to 
time and retaining the cubic terms is expedient only when the loads vary, or the bound- 

aries of the region (the rod ends)are displaced, at a sufficiently slow rate. In general, this 

leads to loss of certain important features of the frequency spectrum of the system. 

Solutions of the boundary value problems for a finite rod based on (2.7), (2.10) and 

(2.12) can be obtained using either the ordinary Fourier transform 

ui (5, t) = Xj (z) Tj (t) 

or the Laplace-Carson transform, as well as other integral transforms, and in all cases 

the corresponding spectral equations (2.8), (2.11) and (2.13) play a vital role. 

3. The most general case of a one-dimensional, piecewise homogeneous periodic 
elastic medium represents a system of periodically recurring groups of segments (layers). 
Let us write the long wave approximation to the field equations for the displacements 

of the segment boundaries within the group, obtained from (1.6) in the same manner as 
in Sect. 2. We denote by LL~ (2, t) the field displacement corresponding to the real dis- 

placement of the left boundary of the jth segment within a group containing n segments 
zj A- X. 
--*Al*,uj _ 

Xj - “j-l 
’ 2 I 2 Av ,uj = ~jA>~~_~“j+l + u ‘1 ‘A 

3 3 3 $,“jt1 + 

For j = 1 the function u~_~ (2, t) must be replaced by U, (r, t), and for j = n , ~~~~~ (2, t) 
by u1 (z: t) , at the corresponding points. 

In the version of the couple stress theory of elasticity considered here the system(3.1) 

is the most general one, since it yields equations covering all specific examples of one- 

dimensional periodic structures. Indeed, let the minimal group of periodically recurring 
segments consist of m segments and let introduce 4 field functions for each, materially 
different segments. By setting n = Q~U we obtain, from (3.1). a system of field equations 
for a macrocell. 

As an example we consider an inhomogeneous medium consisting of four, periodically 
recurring, different layers. The spectral equation of this medium is 

2 cos k (II _t If + Is + I,) = 2 cos hlo cos h?o cos h3~ cos h,w + (y,r3 + y?~,) x 

sin hlw sin hio sin Jb30 siri h;o - (*f1*c2 i- TsTz) sin hzo sin hio cos hlo CDS Xscl, - 

It is clear that the above equation contains, in the long wave approximation, the spect- 
ral equations of a two-component medium for both two-particle and four-particle 
macrocells, as particular cases. 



1026 E.A.Il’lushlna 

BIBLIOGRAPHY 

1. Ditkin, V. A. and Prudnikov. A. P., Handbook of Operational Calculus. 

M.. “Vysshaia shkola”, 1965. 

2. ll’iushina, E. A., On a model of continuous medium taking into account the 

microstructure. PMM Vol. 33, W5, 1969. 

3. Frenkel’, la. I., Introduction of the Theory of Metals. M. -L., Gostekhteor- 

izdat. 1950. 
4. Gol’dman, I. I. and Krivchenko, V. D., Problem of Quantum Mecha- 

nics. M. , Gostekhteorizdat, 1957. 

Translated by L.K. 

UDC 539.385 

TORSION OF AN AXISYMMETRIC ANISOTROPIC BODY WITH MIXED 

BOUNDARY CONDITIONS ON THE SIDE SURFACE 

PMM Vol. 36, No6, 1972, pp.1094-1099 
G. I. NAZAROV and A. A. PUCHKOV 

(Kiev) 
(Received March 6, 1972) 

Differential and integral operators are used to solve the nonsymmetric system 
of equations characterizing the pure torsion of a body of revolution with vari- 
able shear moduli. The stress and displacement functions are expressed by 
convergent series containing two arbitrary analytic functions of a complex 

variable and the coefficients of a real argument defined in terms of the shear 
modulus. As an illustration, the problem of torsion of a hollow cylinder with 
mixed boundary conditions is considered. The torsion of isotropic rods has been 

examined in detail in fl], and for anisotropic bodies of revolution in [2. 33. 

1. Initial equrtlonl. The pure torsion of a body of revolution whose axis of 

cylindrical inhomogeneous anisotropy coincides with the geometric body axis is charac- 
terized in the cylindrical coordinates r z 8 by a linear system of partial differential 

equations of elliptic type p] 

acp - - P (r) -$ = 0, 
ar 

+f-+Q(r)$=O 

P (r) = r3 G, (r), 0 (4 = r3 G2 (4 (1.1) 

Here cp is the stress function, -+ is the displacement function, G,@ = G, (r), G,.a = 

Gz (r) are the shear moduli of the corresponding planes which we consider given (or 
found from experiment), bounded in a range of variation, and piecewise-continuous 
functions of the single variable r. Two stress components rzs = ri (1., z), rre = ‘$ 
(r, z) and the tangential displacement us = u (r, z) defined by the formulas 

1 acp z,=_- 
r2 ar 

= rG1 (r) $ , r2==--+$=rG2(r)-$-, u = 7-9 (1.2) 


